Probing Metal Ion-N7 Coordination in a Ribozyme Branch Domain by NMR

نویسندگان

  • Michèle C. Erat
  • Helena Kovacs
  • Roland K. O. Sigel
چکیده

The N7 of purine nucleotides presents one of the most dominant metal ion binding sites in nucleic acids. However, the interactions between kinetically labile metal ions like Mg2+ and these nitrogen atoms are inherently difficult to observe in large RNAs. Rather than using the insensitive direct N-15 detection, here we have used (2)J-H-1,N-15]-HSQC (Heteronuclear Single Quantum Coherence) NMR experiments as a fast and efficient method to specifically observe and characterize such interactions within larger RNA constructs. Using the 27 nucleotides long branch domain of the yeast-mitochondrial group II intron ribozyme Sc.ai5 gamma as an example, we show that direct N7 coordination of a Mg2+ ion takes place in a tetraloop nucleotide. A second Mg2+ ion, located in the major groove at the catalytic branch site, coordinates mainly in an outer-sphere fashion to the highly conserved flanking GU wobble pairs but not to N7 of the sandwiched branch adenosine. (C) 2010 Elsevier Inc. All rights reserved. DOI: https://doi.org/10.1016/j.jinorgbio.2010.01.008 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-46581 Accepted Version Originally published at: Erat, M C; Kovacs, H; Sigel, Roland K O (2010). Metal ion-N7 coordination in a ribozyme branch domain by NMR. Journal of Inorganic Biochemistry, 104(5):611-613. DOI: https://doi.org/10.1016/j.jinorgbio.2010.01.008 Probing Metal Ion-N7 Coordination in a Ribozyme Branch Domain by NMR Michèle C. Erat, Helena Kovacs and Roland K. O. Sigel* a Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. Email: [email protected]; Fax: ++41-44-635 6802; Tel.: ++4144-635 4652 b Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal ion-N7 coordination in a ribozyme branch domain by NMR.

The N7 of purine nucleotides presents one of the most dominant metal ion binding sites in nucleic acids. However, the interactions between kinetically labile metal ions like Mg(2+) and these nitrogen atoms are inherently difficult to observe in large RNAs. Rather than using the insensitive direct (15)N detection, here we have used (2)J-[(1)H,(15)N]-HSQC (Heteronuclear Single Quantum Coherence) ...

متن کامل

Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme.

The ribonuclease P ribozyme (RNase P RNA), like other large ribozymes, requires magnesium ions for folding and catalytic function; however, specific sites of metal ion coordination in RNase P RNA are not well defined. To identify and characterize individual nucleotide functional groups in the RNase P ribozyme that participate in catalytic function, we employed self-cleaving ribozyme-substrate c...

متن کامل

Probing non-selective cation binding in the hairpin ribozyme with Tb(III).

Catalysis by the hairpin ribozyme is stimulated by a wide range of both simple and complex metallic and organic cations. This independence from divalent metal ion binding unequivocally excludes inner-sphere coordination to RNA as an obligatory role for metal ions in catalysis. Hence, the hairpin ribozyme is a unique model to study the role of outer-sphere coordinated cations in folding of a cat...

متن کامل

Outersphere and innersphere coordinated metal ions in an aminoacyl-tRNA synthetase ribozyme.

Metal ions are essential cofactors for various ribozymes. Here we dissect the roles of metal ions in an aminoacyl-tRNA synthetase-like ribozyme (ARS ribozyme), which was evolved in vitro. This ribozyme can charge phenylalanine on tRNA in cis, where it is covalently attached to the 5'-end of tRNA (i.e. a form of precursor tRNA), as well as in trans, where it can act as a catalyst. The presence o...

متن کامل

Metal-phosphate interactions in the hammerhead ribozyme observed by 31P NMR and phosphorothioate substitutions.

The hammerhead ribozyme is a catalytic RNA that requires divalent metal cations for activity under moderate ionic strength. Two important sites that are proposed to bind metal ions in the hammerhead ribozyme are the A9/G10.1 site, located at the junction between stem II and the conserved core, and the scissile phosphate (P1.1). (31)P NMR spectroscopy in conjunction with phosphorothioate substit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017